Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 778
Filtrar
1.
Emerg Microbes Infect ; 13(1): 2327385, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38514916

RESUMO

Several cellular factors have been reported to be required for replication of classical swine fever virus (CSFV), a member of the genus Pestivirus within the family Flaviviridae. However, many steps of its replication cycle are still poorly understood. The low-density lipoprotein receptor (LDLR) is involved in cell entry and post-entry processes of different viruses including other members of the Flaviviridae. In this study, the relevance of LDLR in replication of CSFV and another porcine pestivirus, Bungowannah pestivirus (BuPV), was investigated by antibody-mediated blocking of LDLR and genetically engineered porcine cell lines providing altered LDLR expression levels. An LDLR-specific antibody largely blocked infection with CSFV, but had only a minor impact on BuPV. Infections of the genetically modified cells confirmed an LDLR-dependent replication of CSFV. Compared to wild type cells, lower and higher expression of LDLR resulted in a 3.5-fold decrease or increase in viral titers already 20 h post infection. Viral titers were 25-fold increased in LDLR-overexpressing cells compared to cells with reduced LDLR expression at 72 h post infection. The varying LDLR expression levels had no clear effect on permissivity to BuPV. A decoy receptor assay using recombinant soluble LDLR provided no evidence that LDLR may function as a receptor for CSFV or BuPV. Differences in their dependency on LDLR suggest that CSFV and BuPV likely use different mechanisms to interact with their host cells. Moreover, this study reveals similarities in the replication cycles of CSFV and other members of the family Flaviviridae that are dependent on LDLR.


Assuntos
Vírus da Febre Suína Clássica , Pestivirus , Suínos , Animais , Vírus da Febre Suína Clássica/genética , Pestivirus/fisiologia , Linhagem Celular , Lipoproteínas LDL/metabolismo , Replicação Viral
2.
Virol J ; 21(1): 53, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438894

RESUMO

BACKGROUND: Atypical porcine pestivirus (APPV) is a newly discovered swine pestivirus, which can cause congenital tremor and high mortality in newborn piglets and subclinical infection in adult pigs, leading to significant impacts on the pig industry. Currently, there is no approved serological method to assess APPV infection status in pig farms. METHODS: In this study, the envelope glycoprotein E2 of APPV was highly expressed in suspension HEK293 cells, and further an indirect enzyme-linked immunosorbent assay based on the recombinant E2 protein (E2-iELISA) was developed and evaluated. RESULTS: The reaction parameters of the E2-iELISA were optimized, and the cutoff value was determined to be 0.2 by analyzing S/P values of 165 negative sera against APPV that were confirmed by virus neutralization test (VNT). Specificity test showed that the method had no cross-reaction with other common swine viruses. The E2-iELISA was evaluated using a panel of swine sera, and showed high sensitivity (113/120, 94.2%) and specificity (65/70, 92.9%), and the agreement rate with VNT was 93.7% (178/190). Subsequently, the E2-iELISA was utilized to investigate the seroprevalence of APPV in pig herds of China. When detecting 1368 pig serum samples collected from nine provinces in China, the overall seroprevalence of APPV was 73.9% (1011/1368). CONCLUSION: Our findings suggest that the E2-iELISA is specific and sensitive, and could be a valuable tool for serological surveillance of APPV infection in pigs.


Assuntos
Infecções Assintomáticas , Pestivirus , Humanos , Adulto , Animais , Suínos , Células HEK293 , Estudos Soroepidemiológicos , Ensaio de Imunoadsorção Enzimática
3.
J Vet Med Sci ; 86(4): 389-395, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38355118

RESUMO

Pestiviruses are classified into two biotypes based on their cytopathogenicity. As the majority of pestivirus field isolates are noncytopathogenic, their titration requires alternative methods rather than direct observation of cytopathogenic effects, such as immunostaining using specific antibodies or interference with cytopathogenic strains. However, these methods require microscopic observation to assess virus growth, which is time- and labor-intensive, especially when handling several samples. In this study, we developed a novel luciferase-based pestivirus titration method using the superinfection exclusion phenomenon with recombinant reporter pestiviruses that possessed an 11-amino-acid subunit derived from NanoLuc luciferase (HiBiT). In this method, swine kidney cells were inoculated with classical swine fever virus (CSFV) and superinfected with the reporter CSFV vGPE-/HiBiT 5 days postinoculation. Virus titer was determined based on virus growth measured in luminescence using the culture fluid 3 days after superinfection; the resultant virus titer was comparable to that obtained by immunoperoxidase staining. Furthermore, this method has proven to be applicable for the titration of border disease virus (BDV) by superinfection with both the homologous reporter BDV and heterologous reporter CSFV, suggesting that this novel virus titration method is a simple technique for automated virus detection based on the luciferase system.


Assuntos
Vírus da Febre Suína Clássica , Pestivirus , Superinfecção , Doenças dos Suínos , Animais , Suínos , Pestivirus/genética , Superinfecção/veterinária , Vírus da Febre Suína Clássica/genética , Luciferases/genética
4.
Structure ; 32(3): 273-281.e4, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38176409

RESUMO

Pestiviruses, within the family Flaviviridae, are economically important viruses of livestock. In recent years, new pestiviruses have been reported in domestic animals and non-cloven-hoofed animals. Among them, atypical porcine pestivirus (APPV) and Norway rat pestivirus (NRPV) have relatively little sequence conservation in their surface glycoprotein E2. Despite E2 being the main target for neutralizing antibodies and necessary for cell attachment and viral fusion, the mechanism of viral entry remains elusive. To gain further insights into the pestivirus E2 mechanism of action and to assess its diversity within the genus, we report X-ray structures of the pestivirus E2 proteins from APPV and NRPV. Despite the highly divergent structures, both are able to dimerize through their C-terminal domain and contain a solvent-exposed ß-hairpin reported to be involved in host receptor binding. Functional analysis of this ß-hairpin in the context of BVDV revealed its ability to rescue viral infectivity.


Assuntos
Pestivirus , Suínos , Animais , Ratos , Pestivirus/genética , Glicoproteínas , Anticorpos Neutralizantes , Glicoproteínas de Membrana , Filogenia
5.
Vet Microbiol ; 290: 109985, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219410

RESUMO

Bovine viral diarrhea virus (BVDV), one of the most important infectious cattle diseases globally, is being combated in multiple countries. The main source for virus transmission within herds and especially to unaffected cattle farms are life-long persistently infected (PI), immunotolerant animals. Therefore, the early identification of PI calves is a major pillar of disease control programs. In addition, rapid and reliable virus identification is necessary to confirm the causative agent in acute clinical cases. Here, we initiated an international interlaboratory proficiency trial in order to evaluate BVDV detection methods. Four ear notch samples and four sera were provided to the participating veterinary diagnostic laboratories (n = 40). Two of the ear notches and two sera contained BVDV and two ear notches and one serum were negative for pestiviruses. The remaining serum was positive for the ovine border disease virus (BDV). The sample panel was analyzed by an ERNS-based ELISA for antigen detection, diverse real-time RT-PCR (RT-qPCR) assays and/or virus isolation. Occasionally, additional typing of the virus strains was performed by sequencing or specific antibody staining of the obtained cell culture isolates. While the antigen ELISA allowed reliable BVDV diagnostics, infectious virus could be isolated only in just under half of the attempts (43.33%). RT-qPCR enabled the sensitive detection of pestiviruses, though an impact of the extraction method on the resulting quantification cycle values was observed. In general, subsequent typing of the detected virus strains is required to differentiate BVDV from BDV infections. In conclusion, for BVDV identification in clinical cases or in the context of disease control, RT-qPCR methods or ERNS antigen ELISAs should be preferentially used.


Assuntos
Vírus da Doença da Fronteira , Doença das Mucosas por Vírus da Diarreia Viral Bovina , Doenças dos Bovinos , Vírus da Diarreia Viral Bovina Tipo 1 , Vírus da Diarreia Viral Bovina , Pestivirus , Doenças dos Ovinos , Animais , Bovinos , Anticorpos Antivirais , Diarreia/veterinária , Ensaio de Imunoadsorção Enzimática/veterinária , Ensaio de Imunoadsorção Enzimática/métodos , Ovinos , Carneiro Doméstico
6.
Aust Vet J ; 102(3): 60-66, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37960889

RESUMO

Border disease virus (BDV) is a member of the pestivirus genus that primarily affects sheep, causing reproductive losses through abortion, still births and the birth of weak lambs. The key characteristic of this disease is the birth of persistently infected (PI) lambs which, after surviving transplacental infection, are born antibody negative, yet virus positive, and thus shed the virus for their entire life and are the primary source of spread within a flock. The cornerstones of BDV control are detection and elimination of PI animals, biosecurity measures to prevent re-infection, and surveillance programs. Recommendations for the control of BDV in sheep are centred around the approach to bovine viral diarrhoea virus (BVDV), the prominent cattle pestivirus species, due to a lack of specific research into BDV control and elimination. In this study, two aspects of a BDV control program were investigated: the effectiveness of the BVDV vaccine, Pestigard®, and the rate of seroconversion in a flock deliberately exposed to known PI lambs. The vaccine appeared to be safe, and the optimal dose was the full cattle dose (2 mL). While vaccination induced high virus neutralising titres to BVDV when administered as either a quarter, half or full dose registered for cattle, the BDV titres achieved were low and unlikely to prevent transplacental infection. In a second study, after exposure of between 2 and 15 days exposure to two PI lambs in confined conditions, only 3 of 66 previously naïve sheep demonstrated seroconversion. This demonstrated a very low rate of transmission and suggested that deliberate exposure to PI lambs at low-risk times for less than 15 days was not likely to be an effective means of achieving seroconversion throughout a flock and, therefore, not provide protection against BDV challenge during gestation.


Assuntos
Doença da Fronteira , Vírus da Doença da Fronteira , Doenças dos Bovinos , Vírus da Diarreia Viral Bovina , Pestivirus , Doenças dos Ovinos , Vacinas , Gravidez , Feminino , Bovinos , Animais , Ovinos , Doença da Fronteira/diagnóstico , Doença da Fronteira/epidemiologia , Aborto Animal/prevenção & controle , Austrália , Anticorpos Antivirais , Doenças dos Bovinos/prevenção & controle , Doenças dos Ovinos/prevenção & controle , Doenças dos Ovinos/epidemiologia
7.
Arch Virol ; 168(12): 294, 2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-37981594

RESUMO

Congenital tremor (CT) in piglets was first reported in 1922, and although the causative pathogen was unknown for many years, atypical porcine pestivirus (APPV) was recently shown to be the cause. APPV is difficult to isolate, and there have been few reports of APPV isolated from field materials. Here, we successfully isolated infectious particles from a tonsillar emulsion from a CT-affected piglet using the established swine-kidney-derived cell line SK-L. In addition, we produced APPV artificially using these cells. Thus, SK-L cells are useful for both isolation and artificial production of APPV.


Assuntos
Rim , Pestivirus , Animais , Suínos , Camundongos , Células L , Pestivirus/genética , Tonsila Palatina
8.
Viruses ; 15(11)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-38005827

RESUMO

Atypical porcine pestivirus (APPV) is a recently discovered and very divergent species of the genus Pestivirus within the family Flaviviridae, which causes congenital tremor (CT) in newborn piglets. In this study, an APPV epidemiological investigation was conducted by studying 975 swine samples (562 tissue and 413 serum samples) collected from different parts of China from 2017 to 2021. The results revealed that the overall positive rate of the APPV genome was 7.08% (69/975), among which 50.7% (35/69) of the samples tested positive for one or more other common swine viruses, especially porcine circovirus type 2 (PCV2) with a coinfection rate of 36.2% (25/69). Subsequently, a novel APPV strain, named China/HLJ491/2017, was isolated in porcine kidney (PK)-15 cells for the first time from a weaned piglet that was infected with both APPV and PCV2. The new APPV isolate was confirmed by RT-PCR, sequencing, immunofluorescence assay, and transmission electron microscopy. After clearing PCV2, a pure APPV strain was obtained and further stably propagated in PK-15 cells for more than 30 passages. Full genome sequencing and phylogenetic analysis showed that the China/HLJ491/2017 strain was classified as genotype 2, sharing 80.8 to 97.6% of its nucleotide identity with previously published APPV strains. In conclusion, this study enhanced our knowledge of this new pestivirus and the successful isolation of the APPV strain provides critical material for the investigation of the biological and pathogenic properties of this emerging virus, as well as the development of vaccines and diagnostic reagents.


Assuntos
Infecções por Pestivirus , Pestivirus , Doenças dos Suínos , Animais , Suínos , Infecções por Pestivirus/epidemiologia , Infecções por Pestivirus/veterinária , Infecções por Pestivirus/congênito , Filogenia , China/epidemiologia
9.
Virol J ; 20(1): 282, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38031135

RESUMO

BACKGROUND: Atypical porcine pestivirus (APPV) is a novel, highly variable porcine pestivirus. Previous reports have suggested that the virus is associated with congenital tremor (CT) type A-II in piglets, and little information is available about the correlation between the virus and sow abortion, or on coinfection with other viruses. In China, reported APPV strains were mainly isolated from South China and Central China, and data about the APPV genome from northern China are relatively scarce. METHODS: Eleven umbilical cords, one placenta, and one aborted piglet, were collected from aborted sows of the same farm in Shandong Province of northern China. Nucleic acids were extracted from the above samples, and subsequently pooled for viral metagenomics sequencing and bioinformatics analysis. The viral coexistence status and complete genome characteristics of APPV in Shandong Province were determined. RESULTS: In abortion cases, APPV was present with Getah virus, porcine picobirnavirus, porcine kobuvirus, porcine sapovirus, Po-Circo-like virus, porcine serum-associated circular virus, porcine bocavirus 1, porcine parvovirus 1, porcine parvovirus 3 and porcine circovirus 3, etc. The first complete genome sequence(11,556 nt) of APPV in Shandong Province of northern China, was obtained using viral metagenomics and designated APPV-SDHY-2022. Comparison with Chinese reference strains revealed that the polyprotein of APPV-SDHY-2022 shared 82.6-84.2%, 93.2-93.6%, and 80.7-85% nucleotide identity and 91.4-92.4%, 96.4-97.7%, and 90.6-92.2% amino acid identity with those of the Clade I, Clade II and Clade III strains, respectively. Phylogenetic analysis based on the complete polyprotein CDS and NS5A sequences concluded that APPV-SDHY-2022 belongs to Clade II. Analysis of the NS5A nucleotide sequences revealed homology of greater than 94.6% for the same isoform, 84.7-94.5% for different isoforms of the same clade and 76.8-81.1% for different clades. Therefore, Clade II was further divided into three subclades, and APPV-SDHY-2022 belonged to subclade 2.3. Members of Clade II have 20 unique amino acids in individual proteins, distinguishing them from Clade I and Clade III members. The E2 protein showed the greatest diversity of putative N-glycosylation sites with 9 patterns, and APPV-SDHY-2022 along with other Chinese APPV strains shared the conserved B-cell conformational epitope residues 39E, 70R, 173R, 190K and 191N of the E2 protein. CONCLUSIONS: We reported viral coexistence and the first complete genome sequence of APPV from abortion cases and from Shandong Province. The new APPV isolate belongs to an independent branch of Clade II. Our results increase the molecular and epidemiological understanding of APPV in China.


Assuntos
Infecções por Pestivirus , Pestivirus , Doenças dos Suínos , Animais , Suínos , Feminino , Infecções por Pestivirus/epidemiologia , Infecções por Pestivirus/veterinária , Filogenia , Genoma Viral , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/genética , Pestivirus/genética , China/epidemiologia , Poliproteínas/genética
10.
Schweiz Arch Tierheilkd ; 165(12): 783-791, 2023 Dec.
Artigo em Alemão | MEDLINE | ID: mdl-38014544

RESUMO

INTRODUCTION: After the successful eradication of the bovine viral diarrhea virus (BVDV) in cattle in Austria, the risk of infections with the border disease virus (BDV) remains. Both viruses belong to the pestivirus genus. BDV infections lead to false-positive results in BVDV surveillance. This can be attributed to the contact to small ruminant populations. In particular, keeping cattle together with sheep or goats on a farm or alpine pasture are significant risk factors. Between 2015 and 2022, BDV type 3 was detected in 15 cattles in Austria. These animals were almost exclusively persistently infected calves. However, a positive antibody result for pestiviruses can lead to an extremely time-consuming and costly, and not always successful search for the source of the infection if no active virus excretor is found. This study documents how small ruminants can be integrated into pestivirus monitoring with a manageable amount of work and costs. 23 406 sheep and goat samples from two brucellosis surveillance programs in small ruminants were analyzed retrospectively. Blood samples were examined using pestivirus real-time pool RT-PCR (qPCR). Direct virus detection of BDV-3 was achieved in 40 sheep from five different federal states. Over the entire investigation period a further 37 detections of BDV-3 were found in cattle, sheep and goats outside of this study throughout Austria. This study accounts for 52 % of all border disease detections from 2015 to 2022. By including small ruminants in pestivirus monitoring, the disruptive factor BDV and the risk of its introduction into cattle herds can be significantly minimized in the future.


INTRODUCTION: Après l'éradication réussie du virus de la diarrhée virale bovine (BVDV) chez les bovins en Autriche, le risque d'infections par le virus de la Border Disease (BDV) demeure. Ces deux virus appartiennent au genre des pestivirus. Les infections par le BDV entraînent des résultats faussement positifs dans la surveillance du BVDV. Ce phénomène peut être attribué aux contacts avec les populations de petits ruminants. En particulier, la détention de bovins avec des moutons ou des chèvres sur une exploitation ainsi que les pâturages alpins sont des facteurs de risque importants pour les infections. Entre 2015 et 2022, le BDV de type 3 a été détecté chez 15 bovins en Autriche. Ces animaux étaient presque exclusivement des veaux infectés de manière persistante. Cependant, un résultat positif aux anticorps contre les pestivirus peut conduire à une recherche extrêmement longue et coûteuse et pas toujours fructueuse de la source de l'infection si aucun excréteur de virus actif n'est trouvé. Cette étude montre comment les petits ruminants peuvent être intégrés dans la surveillance des pestivirus avec une quantité de travail et des coûts gérables. À cette fin, 23 460 échantillons d'ovins et de caprins provenant de deux programmes de surveillance de la brucellose chez les petits ruminants ont été utilisés de façon rétrospective. Les échantillons de sang ont été examinés à l'aide de la RT-PCR en temps réel des pestivirus (qPCR). La détection directe du virus BDV-3 a été réalisée chez 40 moutons provenant de cinq länder différents. Sur l'ensemble de la période d'investigation (2015 ­ 2022), 37 autres détections de BDV-3 ont été effectuées chez des bovins, des ovins et des caprins en dehors de cette étude, dans toute l'Autriche. Cette étude représente 52 % de toutes les détections de Border Disease entre 2015 et 2022. En incluant les petits ruminants dans la surveillance des pestivirus, le facteur de perturbation qu'est le BDV et le risque de son introduction dans les troupeaux de bovins peuvent être considérablement minimisés à l'avenir.


Assuntos
Vírus da Doença da Fronteira , Doenças das Cabras , Infecções por Pestivirus , Pestivirus , Animais , Ovinos , Bovinos , Pestivirus/genética , Cabras , Áustria/epidemiologia , Estudos Retrospectivos , Infecções por Pestivirus/epidemiologia , Infecções por Pestivirus/veterinária , Diarreia/veterinária , Doenças das Cabras/epidemiologia
11.
BMC Vet Res ; 19(1): 219, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37864222

RESUMO

BACKGROUND: This study aimed to characterise the RNA microbiome, including the virome of extended semen from Swedish breeding boars, with particular focus on Atypical porcine pestivirus (APPV). This neurotropic virus, associated with congenital tremor type A-II in piglets, was recently demonstrated to induce the disease through insemination with semen from infected boars. RESULTS: From 124 Artificial Insemination (AI) doses from Swedish breeding boars, APPV was detected in one dose in addition to a sparse seminal RNA virome, characterised by retroviruses, phages, and some fecal-associated contaminants. The detected seminal microbiome was large and characterized by Gram-negative bacteria from the phylum Proteobacteria, mainly consisting of apathogenic or opportunistic bacteria. The proportion of bacteria with a pathogenic potential was low, and no antimicrobial resistance genes (ARGs) were detected in the datasets. CONCLUSION: Overall, the results indicate a good health status among Swedish breeding boars. The detection of APPV in semen raises the question of whether routine screening for APPV in breeding boars should be instigated.


Assuntos
Microbiota , Infecções por Pestivirus , Pestivirus , Doenças dos Suínos , Suínos , Animais , Masculino , Sêmen , Infecções por Pestivirus/veterinária , Viroma , Suécia/epidemiologia , Filogenia , Pestivirus/genética , RNA Viral/genética , Inseminação Artificial/veterinária
12.
Viruses ; 15(9)2023 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-37766277

RESUMO

Classical swine fever virus (CSFV), which is a positive-sense, single-stranded RNA virus with an envelope, is a member of the Pestivirus genus in the Flaviviridae family. CSFV causes a severe and highly contagious disease in pigs and is prevalent worldwide, threatening the pig farming industry. The detailed mechanisms of the CSFV life cycle have been reported, but are still limited. Some receptors and attachment factors of CSFV, including heparan sulfate (HS), laminin receptor (LamR), complement regulatory protein (CD46), MER tyrosine kinase (MERTK), disintegrin, and metalloproteinase domain-containing protein 17 (ADAM17), were identified. After attachment, CSFV internalizes via clathrin-mediated endocytosis (CME) and/or caveolae/raft-dependent endocytosis (CavME). After internalization, CSFV moves to early and late endosomes before uncoating. During this period, intracellular trafficking of CSFV relies on components of the endosomal sorting complex required for transport (ESCRT) and Rab proteins in the endosome dynamics, with a dependence on the cytoskeleton network. This review summarizes the data on the mechanisms of CSFV attachment, internalization pathways, and intracellular trafficking, and provides a general view of the early events in the CSFV life cycle.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Pestivirus , Animais , Suínos , Vírus da Febre Suína Clássica/metabolismo , Endocitose
13.
Viruses ; 15(8)2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37632109

RESUMO

Atypical porcine pestivirus (APPV) was found to be associated with pigs demonstrating congenital tremors (CT), and clinical signs in pigs have been reproduced after experimental challenge. Subsequently, APPV has been identified in both symptomatic and asymptomatic swine of all ages globally. The objective of this research was to perform a longitudinal study following two cohorts of pigs, those born in litters with pigs exhibiting CT and those born in litters without CT, to analyze the virus and antibody dynamics of APPV infection in serum from birth to market. There was a wide range in the percentage of affected pigs (8-75%) within CT-positive litters. After co-mingling with CT-positive litters at weaning, pigs from CT-negative litters developed viremia that was cleared after approximately 2 months, with the majority seroconverting by the end of the study. In contrast, a greater percentage of pigs exhibiting CT remained PCR positive throughout the growing phase, with less than one-third of these animals seroconverting. APPV RNA was present in multiple tissues from pigs in both groups at the time of marketing. This study improved our understanding of the infection dynamics of APPV in swine and the impact that the immune status and timing of infection have on the persistence of APPV in serum and tissues.


Assuntos
Anticorpos , Pestivirus , Animais , Suínos , Estudos Longitudinais , Pestivirus/genética , Reação em Cadeia da Polimerase , Tremor/veterinária
14.
Open Vet J ; 13(7): 903-931, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37614735

RESUMO

Background: Pestivirus A Bovine viral diarrhea virus type 1 (BVDV-1) is a heterogeneous species within the genus, affecting cattle and other ruminants, with economic impact on livestock production. Aim: The study aimed to update the taxonomy of the Pestivirus A, BVDV-1 species and to verify the clustering of the strains reported as genotype 1v, originating from different countries. Methods: Recently deposited strains from China, Turkey, and Iran have been evaluated by the palindromic nucleotide substitutions (PNS) genotyping method. Results: Based on secondary structure analysis of the 5'-UTR sequences, strains reported as 1v from China were clustered as sub genotype 1.7.3 (1o). Genotype 1.19 (1w) was restricted to China and genotype 1.21 (1v) was present only in Turkey and Iran. Conclusion: The application of the PNS method clarified the taxonomical status of strains, revealing the homonymy of genetically different clusters. Furthermore, these observations indicated geographic segregation in the Pestivirus A species, and confirmed the occurrence of new atypical genetic variants, with potential implications on control and prophylaxis.


Assuntos
Vírus da Diarreia Viral Bovina Tipo 1 , Pestivirus , Animais , Bovinos , Turquia , Vírus da Diarreia Viral Bovina Tipo 1/genética , China/epidemiologia , Genótipo , Pestivirus/genética
15.
PLoS Biol ; 21(7): e3002174, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37432947

RESUMO

Enveloped viruses encode specialised glycoproteins that mediate fusion of viral and host membranes. Discovery and understanding of the molecular mechanisms of fusion have been achieved through structural analyses of glycoproteins from many different viruses, and yet the fusion mechanisms of some viral genera remain unknown. We have employed systematic genome annotation and AlphaFold modelling to predict the structures of the E1E2 glycoproteins from 60 viral species in the Hepacivirus, Pegivirus, and Pestivirus genera. While the predicted structure of E2 varied widely, E1 exhibited a very consistent fold across genera, despite little or no similarity at the sequence level. Critically, the structure of E1 is unlike any other known viral glycoprotein. This suggests that the Hepaci-, Pegi-, and Pestiviruses may possess a common and novel membrane fusion mechanism. Comparison of E1E2 models from various species reveals recurrent features that are likely to be mechanistically important and sheds light on the evolution of membrane fusion in these viral genera. These findings provide new fundamental understanding of viral membrane fusion and are relevant to structure-guided vaccinology.


Assuntos
Fusão de Membrana , Pestivirus , Hepacivirus/genética , Pestivirus/genética
16.
Viruses ; 15(7)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37515273

RESUMO

A previous study proved that vGPE- mainly maintains the properties of classical swine fever (CSF) virus, which is comparable to the GPE- vaccine seed and is a potentially valuable backbone for developing a CSF marker vaccine. Chimeric viruses were constructed based on an infectious cDNA clone derived from the live attenuated GPE- vaccine strain as novel CSF vaccine candidates that potentially meet the concept of differentiating infected from vaccinated animals (DIVA) by substituting the glycoprotein Erns of the GPE- vaccine strain with the corresponding region of non-CSF pestiviruses, either pronghorn antelope pestivirus (PAPeV) or Phocoena pestivirus (PhoPeV). High viral growth and genetic stability after serial passages of the chimeric viruses, namely vGPE-/PAPeV Erns and vGPE-/PhoPeV Erns, were confirmed in vitro. In vivo investigation revealed that two chimeric viruses had comparable immunogenicity and safety profiles to the vGPE- vaccine strain. Vaccination at a dose of 104.0 TCID50 with either vGPE-/PAPeV Erns or vGPE-/PhoPeV Erns conferred complete protection for pigs against the CSF virus challenge in the early stage of immunization. In conclusion, the characteristics of vGPE-/PAPeV Erns and vGPE-/PhoPeV Erns affirmed their properties, as the vGPE- vaccine strain, positioning them as ideal candidates for future development of a CSF marker vaccine.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Pestivirus , Vacinas Virais , Suínos , Animais , Vacinas Marcadoras , Anticorpos Antivirais , Vacinas Atenuadas , Vírus da Febre Suína Clássica/genética , Pestivirus/genética
17.
Vopr Virusol ; 68(2): 142-151, 2023 05 18.
Artigo em Russo | MEDLINE | ID: mdl-37264849

RESUMO

INTRODUCTION: Pestiviruses and viruses of the Herpesviridae family are widely distributed among different species of ungulates, but the main information about these pathogens is related to their effect on farm animals. Data on detection of bovine viral diarrhea virus (BVDV) and bovine herpes virus (BoHV) in wild ungulates reported from different countries in recent years raises the question of the role of wild animals in the epidemiology of cattle diseases. AIM OF WORK: To study the prevalence of herpesviruses and pestiviruses in the population of wild artiodactyls of the Moscow region. MATERIALS AND METHODS: Samples of parenchymal organs and mucosal swabs from 124 wild deer (moose and roe deer) shot during hunting seasons 20192022 in Moscow Region were examined by PCR, virological and serological methods for the presence of genetic material and antibodies to bovine infectious rhinotracheitis and viral diarrhea. RESULTS: BVDV RNA was found in a sample from one moose, BoHV DNA was detected in samples from three roe deer and two moose shot in the Moscow region. Seropositive animals were of different sex and age, the total BoHVs and BVDV seroprevalence rates in wild artiodactyls were 46 and 29%, respectively. CONCLUSION: Wild ruminant artiodactyls of the Moscow Region can be a natural reservoir of BoHV-1, and this must be taken into account when planning and organizing measures to control the infectious bovine rhinotracheitis. Cases of BVDV infection in wild artiodactyls are less common, so more research is needed to definitively establish their role in the epidemiology of this disease in cattle.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina , Cervos , Vírus da Diarreia Viral Bovina , Flaviviridae , Herpesviridae , Pestivirus , Varicellovirus , Bovinos , Animais , Estudos Soroepidemiológicos , Moscou/epidemiologia , Vírus da Diarreia Viral Bovina/genética , Animais Selvagens , Diarreia , Anticorpos Antivirais
18.
An Acad Bras Cienc ; 95(1): e20220309, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37132748

RESUMO

Pestivirus can contaminate cell cultures and sera and cause serious problems that evolve the integrity of studies, confidence in diagnostic results, and safety of human and animal vaccines. Contaminations by Pestivirus and other viruses may occur at any time and regular assays of monitoring in cell cultures and your supplies are necessary. This study aimed to analyze the phylogeny of Pestivirus detected from cell cultures, calf serum, and standard strains of three laboratories in Brazil that carry out frequent tests for the monitoring of cellular contaminations. These samples were submitted to phylogenetic analysis to understand the genetic relationship between contaminants occurring in these facilities. As result, the Pestivirus found in samples were Bovine viral diarrhea virus (BVDV-1 and BVDV-2), Hobi-like viruses (often named BVDV-3), and Classical swine fever virus (CSFV), and the phylogenetic analysis help us to infer at three possible routes of contamination in this work.


Assuntos
Vírus da Diarreia Viral Bovina Tipo 1 , Vírus da Diarreia Viral Bovina , Pestivirus , Animais , Suínos , Humanos , Pestivirus/genética , Filogenia , Vírus da Diarreia Viral Bovina/genética , Vírus da Diarreia Viral Bovina Tipo 1/genética , Linhagem Celular
19.
Front Immunol ; 14: 1136051, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37090696

RESUMO

Interferon (IFN), the most effective antiviral cytokine, is involved in innate and adaptive immune responses and is essential to the host defense against virus invasion. Once the host was infected by pathogens, the pathogen-associated molecular patterns (PAMPs) were recognized by the host pattern recognition receptors (PRRs), which activates interferon regulatory transcription factors (IRFs) and nuclear factor-kappa B (NF-κB) signal transduction pathway to induce IFN expression. Pathogens have acquired many strategies to escape the IFN-mediated antiviral immune response. Pestiviruses cause massive economic losses in the livestock industry worldwide every year. The immune escape strategies acquired by pestiviruses during evolution are among the major difficulties in its control. Previous experiments indicated that Erns, as an envelope glycoprotein unique to pestiviruses with RNase activity, could cleave viral ss- and dsRNAs, therefore inhibiting the host IFN production induced by viral ss- and dsRNAs. In contrast, Npro, the other envelope glycoprotein unique to pestiviruses, mainly stimulates the degradation of transcription factor IRF-3 to confront the IFN response. This review mainly summarized the current progress on mechanisms mediated by Npro of pestiviruses to antagonize IFN production.


Assuntos
Evasão da Resposta Imune , Pestivirus , Pestivirus/genética , Pestivirus/metabolismo , Interferons/metabolismo , NF-kappa B/metabolismo , Antivirais , Fatores Reguladores de Interferon/metabolismo , Glicoproteínas/metabolismo
20.
Front Cell Infect Microbiol ; 13: 1146394, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936761

RESUMO

Pestiviruses are a class of viruses that in some cases can cause persistent infection of the host, thus posing a threat to the livestock industry. Interferons (IFNs) are a group of secreted proteins that play a crucial role in antiviral defense. In this review, on the one hand, we elaborate on how pestiviruses are recognized by the host retinoic acid-inducible gene-I (RIG-I), melanoma-differentiation-associated protein 5 (MDA5), and Toll-like receptor 3 (TLR3) proteins to induce the synthesis of IFNs. On the other hand, we focus on reviewing how pestiviruses antagonize the production of IFNs utilizing various strategies mediated by self-encoded proteins, such as the structural envelope protein (Erns) and non-structural protein (Npro). Hence, the IFN signal transduction pathway induced by pestiviruses infection and the process of pestiviruses blockade on the production of IFNs intertwines into an intricate regulatory network. By reviewing the interaction between IFN and pestiviruses (based on studies on BVDV and CSFV), we expect to provide a theoretical basis and reference for a better understanding of the mechanisms of induction and evasion of the innate immune response during infection with these viruses.


Assuntos
Pestivirus , Vírus , Interferons , Imunidade Inata , Antivirais , Pestivirus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...